Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(9): 1732-1747, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550507

RESUMO

Herpesviruses assemble large enveloped particles that are difficult to characterize structurally due to their size, fragility and complex multilayered proteome with partially amorphous nature. Here we used crosslinking mass spectrometry and quantitative proteomics to derive a spatially resolved interactome map of intact human cytomegalovirus virions. This enabled the de novo allocation of 32 viral proteins into four spatially resolved virion layers, each organized by a dominant viral scaffold protein. The viral protein UL32 engages with all layers in an N-to-C-terminal radial orientation, bridging nucleocapsid to viral envelope. We observed the layer-specific incorporation of 82 host proteins, of which 39 are selectively recruited. We uncovered how UL32, by recruitment of PP-1 phosphatase, antagonizes binding to 14-3-3 proteins. This mechanism assures effective viral biogenesis, suggesting a perturbing role of UL32-14-3-3 interaction. Finally, we integrated these data into a coarse-grained model to provide global insights into the native configuration of virus and host protein interactions inside herpesvirions.


Assuntos
Citomegalovirus , Vírion , Humanos , Citomegalovirus/metabolismo , Vírion/metabolismo , Proteínas Virais/metabolismo , Nucleocapsídeo/metabolismo , Proteoma
2.
Antiviral Res ; 217: 105689, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516154

RESUMO

Human cytomegalovirus (HCMV) is a herpesvirus that causes life-threatening infections in newborns or immunosuppressed patients. For viral replication, HCMV establishes a network of cellular interactions, among others cyclin-dependent kinases (CDK). Furthermore, HCMV encodes pUL97, a viral kinase, which is a CDK-homologue. HCMV uses pUL97 in order to phosphorylate and thereby antagonize SAMHD1, an antiviral host cell factor. Since HCMV has several mechanisms to evade restriction by SAMHD1, we first analyzed the kinetics of SAMHD1-inactivation and found that phosphorylation of SAMHD1 by pUL97 occurs directly after infection of macrophages. We hence hypothesized that inhibition of this process qualifies as efficient antiviral target and FDA approved CDK-inhibitors (CDKIs) might be potent antivirals that prevent the inactivation of SAMHD1. Indeed, Abemaciclib, a 2nd generation CDKI exhibited superior IC50s against HCMV in infected macrophages and the antiviral activity largely relied on its ability to block pUL97-mediated SAMHD1-phosphorylation. Altogether, our study highlights the therapeutic potential of clinically-approved CDKIs as antivirals against HCMV, sheds light on their mode of action and establishes SAMHD1 as a valid and highly potent therapeutic target.


Assuntos
Antivirais , Citomegalovirus , Recém-Nascido , Humanos , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD , Antivirais/farmacologia , Replicação Viral
3.
Nat Commun ; 11(1): 4845, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973148

RESUMO

Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of ß-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases.


Assuntos
Replicação do DNA/fisiologia , Infecções por Herpesviridae/metabolismo , Herpesviridae/metabolismo , Proteínas Quinases/metabolismo , Animais , Ciclina A/genética , Ciclina A/metabolismo , Citomegalovirus/genética , DNA/metabolismo , Células HEK293 , Herpesviridae/enzimologia , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Camundongos , Células NIH 3T3 , Sinais de Localização Nuclear/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Nat Microbiol ; 4(12): 2260-2272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548682

RESUMO

The host restriction factor sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is an important component of the innate immune system. By regulating the intracellular nucleotide pool, SAMHD1 influences cell division and restricts the replication of viruses that depend on high nucleotide concentrations. Human cytomegalovirus (HCMV) is a pathogenic virus with a tropism for non-dividing myeloid cells, in which SAMHD1 is catalytically active. Here we investigate how HCMV achieves efficient propagation in these cells despite the SAMHD1-mediated dNTP depletion. Our analysis reveals that SAMHD1 has the capability to suppress HCMV replication. However, HCMV has evolved potent countermeasures to circumvent this block. HCMV interferes with SAMHD1 steady-state expression and actively induces SAMHD1 phosphorylation using the viral kinase pUL97 and by hijacking cellular kinases. These actions convert SAMHD1 to its inactive phosphorylated form. This mechanism of SAMHD1 inactivation by phosphorylation might also be used by other viruses to overcome intrinsic immunity.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Macrófagos/imunologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas Virais/metabolismo , Citomegalovirus/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/virologia , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/farmacologia , Células THP-1 , Replicação Viral/efeitos dos fármacos
5.
Nat Microbiol ; 4(12): 2273-2284, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548683

RESUMO

The deoxynucleotide triphosphate (dNTP) hydrolase SAMHD1 inhibits retroviruses in non-dividing myeloid cells. Although antiviral activity towards DNA viruses has also been demonstrated, the role of SAMHD1 during cytomegalovirus (CMV) infection remains unclear. To determine the impact of SAMHD1 on the replication of CMV, we used murine CMV (MCMV) to infect a previously established SAMHD1 knockout mouse model and found that SAMHD1 inhibits the replication of MCMV in vivo. By comparing the replication of MCMV in vitro in myeloid cells and fibroblasts from SAMHD1-knockout and control mice, we found that the viral kinase M97 counteracts SAMHD1 after infection by phosphorylating the regulatory residue threonine 603. The phosphorylation of SAMHD1 in infected cells correlated with a reduced level of dNTP hydrolase activity and the loss of viral restriction. Together, we demonstrate that SAMHD1 acts as a restriction factor in vivo and we identify the M97-mediated phosphorylation of SAMHD1 as a previously undescribed viral countermeasure.


Assuntos
Muromegalovirus/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Antivirais/farmacologia , Fatores Estimuladores de Colônias/metabolismo , Modelos Animais de Doenças , Células HEK293 , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/enzimologia , Muromegalovirus/crescimento & desenvolvimento , Células NIH 3T3 , Fosforilação , Proteínas Recombinantes , Proteína 1 com Domínio SAM e Domínio HD/genética , Transcriptoma , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
PLoS Pathog ; 13(1): e1006193, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129404

RESUMO

Generally, the antagonism between host restriction factors and viral countermeasures decides on cellular permissiveness or resistance to virus infection. Human cytomegalovirus (HCMV) has evolved an additional level of self-imposed restriction by the viral tegument protein pp150. Depending on a cyclin A-binding motif, pp150 prevents the onset of viral gene expression in the S/G2 cell cycle phase of otherwise fully permissive cells. Here we address the physiological relevance of this restriction during productive HCMV infection by employing a cyclin A-binding deficient pp150 mutant virus. One consequence of unrestricted viral gene expression in S/G2 was the induction of a G2/M arrest. G2-arrested but not mitotic cells supported viral replication. Cyclin A destabilization by the viral gene product pUL21a was required to maintain the virus-permissive G2-arrest. An HCMV double-point mutant where both pp150 and pUL21a are disabled in cyclin A interaction forced mitotic entry of the majority of infected cells, with a severe negative impact on cell viability and virus growth. Thus, pp150 and pUL21a functionally cooperate, together building a cell cycle synchronization strategy of cyclin A targeting and avoidance that is essential for productive HCMV infection.


Assuntos
Ciclina A/genética , Infecções por Citomegalovirus/virologia , Citomegalovirus/patogenicidade , Fosfoproteínas/metabolismo , Mutações Sintéticas Letais/genética , Proteínas da Matriz Viral/metabolismo , Replicação Viral/fisiologia , Células Cultivadas , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/metabolismo , Citometria de Fluxo , Interações Hospedeiro-Patógeno/genética , Humanos , Immunoblotting
7.
J Virol ; 85(21): 11409-21, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880774

RESUMO

Many viruses antagonize tumor necrosis factor alpha (TNF-α) signaling in order to counteract its antiviral properties. One way viruses achieve this goal is to reduce TNF-α receptor 1 (TNFR1) on the surface of infected cells. Such a mechanism is also employed by human cytomegalovirus (HCMV), as recently reported by others and us. On the other hand, TNF-α has also been shown to foster reactivation of HCMV from latency. By characterizing a new variant of HCMV AD169, we show here that TNFR1 downregulation by HCMV only becomes apparent upon infection of cells with HCMV strains lacking the so-called ULb' region. This region contains genes involved in regulating viral immune escape, cell tropism, or latency and is typically lost from laboratory strains but present in low-passage strains and clinical isolates. We further show that although ULb'-positive viruses also contain the TNFR1-antagonizing function, this activity is masked by a dominant TNFR1 upregulation mediated by the ULb' gene product UL138. Isolated expression of UL138 in the absence of viral infection upregulates TNFR1 surface expression and can rescue both TNFR1 reexpression and TNF-α responsiveness of cells infected with an HCMV mutant lacking the UL138-containing transcription unit. Given that the UL138 gene product is one of the few genes recognized to be expressed during HCMV latency and the known positive effects of TNF-α on viral reactivation, we suggest that via upregulating TNFR1 surface expression UL138 may sensitize latently infected cells to TNF-α-mediated reactivation of HCMV.


Assuntos
Citomegalovirus/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Fator de Necrose Tumoral alfa/imunologia , Proteínas Virais/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries
8.
J Virol ; 80(23): 11686-98, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005669

RESUMO

NF-kappaB plays an important role in the early cellular response to pathogens by activating genes involved in inflammation, immune response, and cell proliferation and survival. NF-kappaB is also utilized by many viral pathogens, like human cytomegalovirus (HCMV), to activate their own gene expression programs, reflecting intricate roles for NF-kappaB in both antiviral defense mechanisms and viral physiology. Here we show that the NF-kappaB signaling pathway stimulated by proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) becomes inhibited in HCMV-infected cells. The block to NF-kappaB signaling is first noticeable during the early phase of infection but is fully established only at later times. Biochemical and genetic evidence demonstrates that the viral inhibition of proinflammatory signaling by distinct cytokines occurs upstream of the convergence point of NF-kappaB-activating pathways, i.e., the IkappaB kinase complex, and that it is mediated via different mechanisms. Consistent with this, we further show that an HCMV variant that has lost the ability to downregulate TNF-alpha-induced NF-kappaB signaling also fails to downregulate surface expression of TNF receptor 1, thereby mechanistically linking the inhibition of TNF-alpha-induced NF-kappaB signaling by HCMV to TNF receptor targeting. Our data support a model whereby HCMV inhibits cytokine-induced NF-kappaB signaling at later times during infection, and we suggest that this contributes to the inhibition of the cell's antiviral defense program.


Assuntos
Citomegalovirus/química , Citomegalovirus/fisiologia , Interleucina-1beta/antagonistas & inibidores , NF-kappa B/biossíntese , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Humanos , Interleucina-1beta/metabolismo , Proteínas Serina-Treonina Quinases , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...